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SUMMARY

The minute concentrations of many biochemically and clinically

important substances are currently estimated by radioiminunoassay (RIA) .

Traditionally, the most popular approaches to the statistical analysis of

RIA data have been to linearize the data through transformation and fit

the calibration curve using least squares , or to directly fit a nonlinear

calibration curve using least squares. Estimates of the hormone concentra-

tion in patients are then obtained using this curve . Unfortunately , the

transformation is frequently unsuccessful in linearizing the data. Further-

more , the least squares fit can lead to erroneous results in both approaches

since the many sources of error which exist in the RIA process often result

in outlier observations .

In this paper , a new approach to the analysis of RIA data is dis-

cussed . An algorithm is presented for obtaining the M-estimates of nonlinear

calibration curves. The curves to be fitted are modified hyperbolae based

on 12 to 16 observations. A procedure , based on the application of the

Bonferroni Inequality , is presented for obtaining tolerance-like interval

estimates of the concentration of the hormone of interest in the patients.

Results of simulations are cited to support the method of construction of

confidence bands for the fitted calibration curve. Data obtained from the

Veteran ’s Hospital , Buf f a l o, New York are used for examples throughout the

paper .

Keywords: Statistical Calibration, Radioimnlunoassay , N-Estimate ,
Nonlinear Estimation
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1. Introduction

Traditionally, bioassay techniques have been used to estimate the

concentration of various biological substances found in man. However,

for many hormones , bioassay does not have the sensitivity needed to

determine the very low concentrations at which these hormones exist.

This is the case, for example, with polypeptide hormones involved in

many protein-binding reactions. In 1959, Yalow and Berson [1968] devel-

oped a biological technique called radioimmunoassay (RIA) which is

capable of measuring hormones existing at concentrations as small as 1

picogram per milliliter. Since its inception , the principles of RIA have

been extended so that many substances including enzymes and plasma tissue

proteins can now be assayed . In addition to routine clinical use, RIA

techniques are now widely used as a tool in pregnancy and cancer detec-

tion (Skelley , Brown and Besch ( 1973]) .

The radioimmunoassay process can be described in two steps. In

the first step , radioactive counts , y , corresponding to a known concen-

tration of hormone, x , are recorded over a fixed period of time. The

observed number of radioactive counts often referred to as counts bound ,

is inversely proportional to x . The set of (x,y) pairs comprise the

standards curve. In the data analyzed in this paper , duplicate counts

are recorded at 6 , 7 or 8 distinct values of X . In the second step

of the procedure , the counts bound are obtained for patients where the

hormone concentration is not known. By comparing the counts bound with

the standards curve, estimates of the hormone concentration in the

patient can be made. A more complete description of the RIA technique

can be f ound in Skelley , et al [1973].
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From the description of the RIA process, it is apparent that the

statistical techniques required for the analysis of RIA data are those of

the classical calibration problem (Scheffe’ [1973 ] , Lieberman , Miller and

Hamilton [19671). In the calibration problem the variable of

interest , X , is difficult if not impossible to measure directly.

However, a related variable Y , which is dependent on X , is relatively

easy to measure. Given a known value x. of X , y. is assumed to be

a random variable with mean f(x~~~) and dispersion ~ . To determine

the functional relationship between X and Y , n pairs

(x1,y 1),. .. ,(x ,y) are observed at known X , where it is assumed that

the errors in measurement associated with X are negligible relative to

the measurement errors on Y . Assuming that the f orm of f ( •,.) is known,

~ and ~ can be estimated from these data. Subsequently, k independent

observations y
~ , 

j n+1 ,n+2 ,... are made at unknown values x •

The estimated calibration curve f(x. ,~) is used to make inferences on

the unknown x . . In the context of RIA , X refers to the hormone of
J

interest and Y the counts bound . Typically , k , the number of patients

can be anywhere within range a range of 20 to 200 -

In this paper , we present a method for the analysis of RIA data

using the concepts of statistical calibration. The analysis is broken

into three parts; the specification of the calibration model, the estima-

tion of the parameters of the calibration model and the estimation of

hormone concentration in the patients. Robust techniques are used in the

parameter estimation to minimize the effect of outliers which frequently

occur in the standards data. Because of the small number of observations

I . - . -
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available for the estimation of the parameters, less than 16 , simulations

are used to determine the properties of the parameter estimates in

Section 3 and the calibration curve confidence bands obtained in Section 4.

The techniques developed are applied to 124 RIA data which were kindly

supp lied to us by Dr. J. Steinbach of the Veterans Administration Hospital,

Buffalo, New York.

2. Calibration Model

The proper identification of the calibration model is crucial to

the analysis of RIA data. If the model does not adequately describe the

standards data , there can be little confidence in the accuracy of the

hormone concentration estimates for patients. Many models have been pro-

posed for calibrating purposes. Miong the models are the theoretical

hyperbola of Yalow and Berson (1968] and Ekins, Newman and O ’Riordan [1968],

low order polynomials (Ekins,et a l [1968] , Taljedal and Wold [19701), and

a “statistical” model proposed by Meinert and McHugh [19681. These models ,

as well as many others , have not been widely accepted either because they

are too complicated for routine clinical use or because they are not

applicable to a wide variety of hormones.

The calibration curve which has been most widely adapted for use

in RIA, which we r.ow explain, is the logit model of Rodbard and others

[1968], [19701 , [1971]. Let y~ be the counts bound corresponding to

dose x~ ~~~ 0 . Def ine Y0 to be t1ie zero dose counts and N to be the

background counts. and N , which are mean values of observed counts ,

. . 1  - — —
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are assumed to be fixed constants. Let a new response variable y! be

defined as

- N)/ (Y
0 

- N) (1)

After making certain critical assumptions about the chemical reactions of

the RIA process , Rodbard and Lewald [1970] show that

logit y = log (yf/(l~~y!)) = a’ + ~~
‘ log x~ + 

~~~

. (2)

where the have zero mean and variance a
2 

. A weighted least squares

algorithm in which the weight for each observation is the reciprocal of

its standard deviation is proposed for the estimation of a’ , ~~
‘ and

a2 
. Rodbard and Cooper [19701 suggest that the variance of logit y~

can be expressed as a quadratic function of the observed counts. An

example of the fit provided by this method is presented in Figure 1.

(Figure 1 about here)

Although the logit transformation appears to provide an adequate

model for calibrating purposes , it is not without serious deficiencies.

Since Y~ and N are measured quantities , they are subject to the same

errors as the other standardg data. To assume these quantities to be con-

stant is an oversimplification of the problem . In addition , by assuming

Y0 
fixed and taking logarithms of dose , important information about the

— - . - -
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zero dose region of the curve is lost. This becomes particularly critical

in instances such as pregnancy detection when the low dose region of the

calibration curve is of primary importance. More disturbing , is the fact

that too frequently the transformed data are not linear as in Figure 2,

80 that the fitted straight line does not properly represent the data.

Furthermore , the y! may not be between 0 and 1 . The possible ramifi-

cation of the poor fit are indeed serious since the standard curve often

provides the basis for the treatment of patients.

(Figure 2 about here)

Since the logit transformation, as well as other linearization

methods, do not consistently provide acceptable fits of the standard data ,

we examined scatter plots of Y (counts bound) vs. X (known col4centra-

tion) from 124 data sets. These data sets include standards data from

the assay of Digoxin, Folic Acid , Gastrin, Insulin, Renin, TSH , T3 and

Vitamin B-l2. The scatter plots suggest , as a calibration model , the

modif ied hyperbola

y~ = a + B/(l + Yx
6) + (3)

where the have zero mean and dispersion a2 
. Figure 3 illustrates

the excellent fit of equation (3) to Insulin standard8 data. The dashed

curve, which is the fitted logit , is included for comparison. 

- - .
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(Figure 3 about here)

Modelling the RIA standard data by the modified hyperbola has a

number of advantages. Since the curve is based on empirical observations

about the data and not on the chemical reactions underlying RIA , equation

(3) is not restricted by the unreasonable assumptions (Feldman [1972])

imposed on other “theoretical” curves. The key assumption we make is

that the mean response Y decreases monotonically as hormone concentra-

tion increases. This assumption seems reasonable and assures a 1 to 1

relationship between counts and hormone concentration. Equation (3) also

allows Y
0 to be included in the data set used to estimate the parameters

of the model. As we have already indicated , this is of particular impor-

tance to the clinician concerned with the low dose region of the calibra-

tion curve.

Another feature of the modified hyperbola is that this model yields

parameters which have physical interpretations, a , the estimated value

of ~ , is an estimate of background counts or noise. ~ estimates the

zero dose counts. The midrange of the assay , also referred to as the

effective dose for 50% response (Rodbard and Hutt [1974]), is estimated
1%

by ~ . The estimated value of ~ , which is in the neighborhood of 1.0

provides an indication of the sharpness in the bend of the curve. The

larger the value of 5 , the more sharp is the bend in the curve. It is

important to note that for some hormones such as Gastrin and Vitamin B-12,

the parameter S can be set to 1.0 without altering the fit significantly .

The resulting model is the rectangular hyperbola proposed by Bliss (1970]

- -- —
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and Taljedal and Wold [1970].

If one assumes zero error in measurement of Y , it is easily

shown that equation (2) and equation (3) are mathematically identical .

Taking anti-logarithms of equation (2),

y~’/(l-y~~) = ea x~ (4)

Solving for y~,

y~ N+ (Y0
_
N)/(l + e

a x B ) 
(5)

which is identical to equation (3) where N a , (Y0 
- N) = ~ , a’ -log y

and ~~ ~~= -
~~~ 

. The difference between the two models is the error struc-

ture which is assumed and the added flexibility of equation (3) which is

gained by estimating zero counts and background noise.

We are not alone in using the modified hyperbola to model the

calibration curve. Independent of our research, Rodbard and Hutt [1974]

have proposed the same calibration model . In addition , Finney [1976]

observes that equation (3) can be expressed in terms of the logistic

model which he uses as a calibration model.

Having selected a calibration model for RIA , an algorithm for

parameter estimation is required . In most instances, the ordinary least

squares fit is adequate. (Tests for equality of variance suggest that

the assumption of homoscedacity is valid for the 8 hormones considered

(Tiede [19761)). However, too often, observations which are obviously in

_  
-- -, -- . —-—--___
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gross error are found in the standard data. This is illustrated in

Figure 4 . The least squares fit of the data (dashed line) is

unacceptable since it is overly influenced by the outlier observations .

Thus, a procedure which will not be overly influenced by outliers is

desirable. As Finney [19761 states, “A computer program for routine

analysis of RIA in a clinical environment must be designed for use by

non-statisticians, with protection against gross errors arising from

uncritical acceptance of data on output.” For these reasons , we propose

the following method for the estimation of the parameters of equation (3).

3. Robust Nonlinear Regression

Robust estimation techniques provide an alternative means of mini-

mizing the influence of outlier observations in a set of data. These

methods also provide least squares-type estimates in the absence of out-

h er observations. Andrews [1974a] and Relies [19681 report success in

obtaining M-estimates (Huber [1964, 1972] ) of parameters in the linear

model. In this section , we present an algorithm for estimating parameters

in the nonlinear model such as equation (3).

Consider a continuous function y = ~
(
~,e) which is nonlinear in

the parameter vector 8 . The Gauss-Newton algorithm can be used to

obtain the least squares estimate of 8 which satisfies

Z ?(x~ ,~ ) ~ - f(x~ ,e)) = 0 j  = l,...,p (6)
i=l
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where f ’(• , •) is the derivative of f with respect to 8

p is the length of the vector ~~,

and ~p(z) = z

The M-estimate of 8 is obtained by replacing ~ (z) = z with an

alternative function of z . Many f unctional forms for cp have been pro-

posed (Hampel [1974], Huber [1964 ] , Tukey (1960] ) .  In this paper , we

concentrate on the SINE function (Andrews, et al [1972] )

(sin (z/sc) Izi � rr sc
= (7)

1. 0 ~z~~>r r sc

where s is an estimate of scale and c is a constant which influences

the robustness of the resulting estimates. Assuming an underlying

Gaussian distribution , Andrews (1974b 1 indicates that the efficiency of

the SINE estimate with c = 2.1 relative to the least squares estimate

is 96%.

The SINE estimate of ~ is easily obtained in an iteratively

reweighted algorithm similar to the Gauss-Newton least squares algorithm.

Denote the result of the kth iteration by ~(‘~) . Expanding f(~ ,~) in

(k+1)
a Taylor Series and assuming the remainder term is negligible, ~

is the solution to the set of equations

~ ~~~ 
(k)( - ~ F(~~~~~)~ e°~’~ ) = (8)

i=l jl

— — - . 1 . .. ._ ~- - —  . .
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where

~
F(Q) -

~

j

~~~ = ~ - f(t ~,e~~))/s~’~

= r~~~)/r~
’
~

(k) (k) 
+ ~ (F(e°~~)).. 

(k)
i J=1

and 5(k) 
is an appropriate estimate of scale.

Iterations continue until a convergence criterion is satisfied.

The covariance matrix of ,Q is estimated by

i~. = (nsiin - P))[Z 
~2(~~)/(~~ e~

’(z ))
] 

K(~~WF) (9)

where

F =
ij

= y~ 
- f(x~ ,~)

K = sln( E
i— i

_ _ _  -- .—-
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and

(fina l “weight” of ith observation j i
W
jj

This is the nonlinear analog of the parameter covariance matrix in the

linear model pr oposed by Huber [1973 ] and Welsch [1975] where the des ign

matrix ~ is replaced by the Jacobean F . The factor K is an adjust-

ment factor to account for the asymptotic bias in the estimate (Mahlow s

[1975], Gross [1975].

Estimates of the parameter vector in the RIA calibration model are

obtained using the robust algorithm with c = 2.1 and

8 = median [largest (n-p + 1) 
~
yj- f(xj,~ )U 

. In only 9 of the 124

cases did the parameters fail to converge . Inspection of the 9 data

sets revealed that the data contained too many outlier observations .

Time for convergence for the other data sets took about 1.5 times as

much CPU time on a CDC-6400 as that required to obtain the least squares

estimates using Gauss-Newton. Most of the excess time is due to the need

to compute the sine function for each observation at each iteration.

(Figures 4 &5 about here)

Figures 4 and 5 are typical of the results for the data sets examined.

When outliers are present in the da ta , as in Figure 4 , the robust

fit is unaffected by their presence. This is indicated by the zero

“weight” assigned to the observations in Table 1 . The least squares
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fit (dashed line),  on the other hand , is severly influenced by the out-

h ers. In the case where there are no apparent outliers in the data ,

the robust and least squares fits are virtually indistinguishable , as

indicated by the single solid line in Figure 5. In this case, all “weights”

are relatively large (Table 2).

(Tables I and 2 about here)

A simulation was conducted to determine the distribution of 8

the M-estimate of ~ . Typical RIA standard data containing 0, 1 or 2

outliers were generated using known values for the parameters in equation

(3). 8 was then estimated using the algorithm defined above. The

results of the simulation indicate that the parameter estimates are

normally distributed about the true parameter value.

As in all nonlinear regression problems, initial estimates of the

parameters are required for the parameter estimation algorithm. In RIA

the initial estimates of 
~~. , ~ and y are conveniently obtained from

the following relationships:

a if S � 0 
~~ 

a..~ = mean background count

f(0 ,~ ) = a + ~ 
~ ~ (mean o count)- a0

(0,8) -8Y if 6 = I = x (slope of curve near x = 0)

For the data analyzed , we have found 0.5 � S ~ 2.5 . Thus, we suggest

that 60 = 1 provides an adequate initial estimate of 6



13

4. Estimation of Hormone Conc entration

Having addressed two of the three aspects of RIA data analysis, we

turn to the final and most important, the estimation of hormone concentra-

tion in the patients. Point estimates are easily obtained by solving

A

~
‘obs a + ~/ (l  + Yx 6) (10)

for x . If robs > a. + ~ or 
~ob < ~~. , we suggest that x be set to

0 or , respect ively, as 
~
‘obs is beyond the calibration limits.

One means of correcting for 
~obs < a. is to dilute the X sample by

same known amount, and then redetermine 
~ob 

This shoulil produce a

~
‘obs > ~

Because of the large number of hormone predictions per assay ; con-

struction of confidence intervals for x is not easily accomplished. To

illustrate this, consider the case of simple linear regression. The

lOO(l-a)7. confidence interval for x , in this case, is obtained by

solving for

~ ~~~k ,n-2~ 
s2 (l+~~+ (x~~~~)IE (X j

_
~~)

2) ; (II)

i = l , . . . ,k

where k is the total number of predictions to be made. This procedur e

is adequate for small k . However, when k is large , as in RIA , the

critical constant kFk n-2 becomes so large , the resulting confidence

intervals are noninformative . Thus, an alternative approach , independent

of k , is required .
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Scheff~ (1973] and Lieberman, Miller and Hamilton [19671 present

procedures for obtaining tolerance like interval estimates on x when

k is large. Although the Scheff~ procedure produces narrower intervals

than does the method of Lieberman, et al (Scheffd [1973]), we pursue the

latter method because of the ease with which it is extended to the non-

linear problem and the fact that the application of this method does not

require too much decision making by the clinician.

To extend the results of Lieberman, et al to RIA , it is first

necessary to calculate confidence bands for the fitted calibration curve.

In the multiple linear model , Miller [1966] shows that the lOO(l -a)%

confidence bands for the fitted line are defined by

X
T
~~C~~

T
~~± ~~~~~~~~~~~~~~~~~~ X) ¾ (12)

where X is the nxp design matrix and e is the p-vector of coeffi-

cients. Replacing ~ by the Jacobean F , we propose that the l00(l-a.)%

conf idence band s for the RIA cal ibration curve are def ined by

f(x , 8) e f ( ~~,~) ± (pF;,n_p ) (~
T
vi) 

(13)

A

where ~ and ~ are as defined in equation (9). Confidence bands con-

structed in this fash ion are presented in Figure 6 .

(Figure 6 about here)

_

~

__

~

_1_______ - - - —
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The validity of equation (13) is supported through simulation

(Tiede [1976]). Confidence bands with a set to .05 and .10 are

obtained for simulated RIA standard data containing 0, 1 and 2 outliers.

The simulation revealed no abnormalities which would result in the rej ec-

tion of the hypothesis that the confidence bands for the RIA calibration

curve are defined by equation (13).

To complete the construction of interval estimates on x , def ine

S ( n - p - m ) ’1 E (r . -r)2 (14)
i~vi

±O ‘~

where

— -1 ~~-‘ -l ~~-‘r (n-in) z.., (y~ -~~~~~~) 
= (n-in ) i.~ r

iJ3w
1~
L0 i~w~~O

and in is the number of zero weights. Assuming the lOOy°h confidence

interval on the mean response e(y
~

) = a + 81(1 + ~‘x
5) is contained in

the interval

2 ¾

y ± Z
Y
s ((n-P_m)/xfl_P..~ ,a.I2) 

(15)

with probability 1 -a/2 , equations (13) and (15) can be combined to

produce interval estimates of the unknown hormone. The lower limit, X
L

is the solution to

- (pFp,n_p)
¾(~

T
~Y~F)

½ = y + zy~~
(n _ p _ m i x

~..p_m ,a,2) 
(16)
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and the upper limit is ‘he solution to

f(x~~ Q) + (pF _~)¾ (~YV ¾ y _ Z
y s ( ( n _ p _ m ) / ) ( ~ _p_ m ,a.,2)

¾ 
(17)

By virture of the Bonferroni inequality , intervals constructed in this

maimer are such that at least lO0Y7. of the intervals will contain the

true concentration with confidence 1 - a . The bracketed interval in

Figure 7 typifies intervals constructed by this algorithm.

(Figures 7 and 8 about here)

In the calculation of the interval estimates for x , care must be

taken, as in the point estimation of x , to insure that estimates are

not made beyond the limits established by the calibration curve. Figure

8, in which the calibration curve and corresponding confidence bands are

divided into five distinct sections , illustrates this concept. Hormone

estimates which can be made in each section are presented in Table 3.
A

In section 3, for example , estimates of x and the upper limit on x

XL can be obtained , but the lower limit on ;,XL , cannot be estimated .

Since x cannot be less than zero, XL is set equal to zero in this

instance. Each calibration curve uniquely defines the estimation limits.

(Table 3 about here )

- -~~ -—.-.-~~ -

- I  - ,
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5. Conclusion

In this paper , we have thus presented a procedure for the analysis

of radioisiuunoassay data. In addition to presenting a family of curves to

model RIA standards data, as many others have done, we also pursue the

construction of confidence interval for estimates of hormone concentration

in patients. Unlike Finney [1976] who views the data analysis problems

in terms of bioassay data analysis, we apply concepts of statistical cali-

bration to radioimmunoassay. Because of the frequency at which outlier

observations appear in clinical data , we recommend fitting the calibration

curve by a robust nonlinear regression algorithm. The algorithm here has

the virtue of being easily adopted to a standard nonlinear least squares

program.

, —fl--- - .  - -
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TABLE 1

Hormone concentration , X , observed counts , Y , fitted counts, Y
and final “weights ,” W , for TSH standards curve in Figure 4 .

x Y Y W

0.0 5422.0 5357.1 .94

0.0 5311.0 .97

2.0 4034.0 4224.7 .57

2.0 4257.0 .99

5.0 3033.0 2992.7 .98

5.0 3138.0 .73

10.0 1864.0 1918.8 .96

10.0 1849.0 .93

20.0 1108.0 1055.9 .96

20.0 1012.0 .97

50.0 412.0 406.6 1.00

50.0 450.0 .97

100.0 123.0 182.4 .95

100.0 214.0 .99

- a  - - 
- - — -. —~~~



TABLE 2

Hormone concentration, X , observed counts, Y , fitted counts, ‘1
and final “weights,” W , for TSH standards curve in Figure 5

x Y Y W

0.0 7720.0 8123.9 .00

0.0 8113.0 1.00

2,0 6664.0 6720.8 .96

2.0 6804.0 .91

5.0 4994.0 4962.3 .99

5.0 4948.0 1.00

10.0 3410.0 3397.1 1.00

10.0 3208.0 .57

20.0 4478.0 2184.2 .00

20.0 2396.0 .48

50.0 1302.0 1341.1 .98

50.0 1377.0 .98

100.0 1025.0 1076.9 .96

100.0 1096.0 .99

— a . —  ~—_—— - -- . ----———-- - - — - — —— —  — ——-—-----—-——-———-. — r .



TABLE 3

Estimates of unknown hormone concentration and correspondin3 lower
and upper limits which can be obtained in each section of Figure 8.

Section Lower Hormone Concentration Upper
Estimate

1 0 0 0
A

2 0

° x

4 x~ x

5 w

‘ - ‘ ~~ 



Figure 1 Fit of logit model to Vitamin B-l2 standards data.

Figure 2 Fit of logit model to T-3 standards data.

Figure 3 The solid line is the fit of equation (3) to Insulin standards

data. The dashed line is the corresponding logit fit.

Figure 4 The solid line is the fit of equation (3) to TSH standards

data using the robust algorithm. The dashed line is the

corresponding least squares fit.

Figure 5 The fit of TSH standards data using both the robust algorithm

and least squares. The single solid line reflects the fact

that the two fits are virtually identical.

Figure 6 Fitted calibrations curve and confidence bands for

Vitamin B-l2 standards data .

Figure 7 Procedure for construction of interval estimate of hormone

concentration in patients.

Figure 8 Division of calibration curve into 5 distinct sections. 
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